Route Inspection Problem - Solution

Solution

If a graph has an Eulerian circuit (or an Eulerian path), then an Eulerian circuit (or path) visits every edge, and so the solution is to choose any Eulerian circuit (or path).

If the graph is not Eulerian, it must contain vertices of odd degree. By the handshaking lemma, there must be an even number of these vertices. To solve the postman problem we first find a smallest T-join. We make the graph Eulerian by doubling of the T-join. The solution to the postman problem in the original graph is obtained by finding an Eulerian circuit for the new graph.

Read more about this topic:  Route Inspection Problem

Famous quotes containing the word solution:

    Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.
    Jane Rule (b. 1931)

    All the followers of science are fully persuaded that the processes of investigation, if only pushed far enough, will give one certain solution to each question to which they can be applied.... This great law is embodied in the conception of truth and reality. The opinion which is fated to be ultimately agreed to by all who investigate is what we mean by the truth, and the object represented in this opinion is the real.
    Charles Sanders Peirce (1839–1914)

    Who shall forbid a wise skepticism, seeing that there is no practical question on which any thing more than an approximate solution can be had? Is not marriage an open question, when it is alleged, from the beginning of the world, that such as are in the institution wish to get out, and such as are out wish to get in?
    Ralph Waldo Emerson (1803–1882)