Rotational Invariance - Application To Quantum Mechanics

Application To Quantum Mechanics

In quantum mechanics, rotational invariance is the property that after a rotation the new system still obeys Schrödinger's equation. That is

= 0 for any rotation R.

Since the rotation does not depend explicitly on time, it commutes with the energy operator. Thus for rotational invariance we must have = 0.

Since = 0, and because for infinitesimal rotations (in the xy-plane for this example; it may be done likewise for any plane) by an angle dθ the rotation operator is

R = 1 + Jz dθ,
= 0;

thus

d/dt(Jz) = 0,

in other words angular momentum is conserved.

Read more about this topic:  Rotational Invariance

Famous quotes containing the words application to, application, quantum and/or mechanics:

    If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    I think that a young state, like a young virgin, should modestly stay at home, and wait the application of suitors for an alliance with her; and not run about offering her amity to all the world; and hazarding their refusal.... Our virgin is a jolly one; and tho at present not very rich, will in time be a great fortune, and where she has a favorable predisposition, it seems to me well worth cultivating.
    Benjamin Franklin (1706–1790)

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    the moderate Aristotelian city
    Of darning and the Eight-Fifteen, where Euclid’s geometry
    And Newton’s mechanics would account for our experience,
    And the kitchen table exists because I scrub it.
    —W.H. (Wystan Hugh)