In Two Dimensions
In two dimensions every rotation matrix has the following form:
- .
This rotates column vectors by means of the following matrix multiplication:
- .
So the coordinates (x',y') of the point (x,y) after rotation are:
- ,
- .
The direction of vector rotation is counterclockwise if θ is positive (e.g. 90°), and clockwise if θ is negative (e.g. -90°).
- .
Note that the two-dimensional case is the only non-trivial (e.g. one dimension) case where the rotation matrices group is commutative, so that it does not matter the order in which multiple rotations are performed.
Read more about this topic: Rotation Matrix
Famous quotes containing the word dimensions:
“Words are finite organs of the infinite mind. They cannot cover the dimensions of what is in truth. They break, chop, and impoverish it.”
—Ralph Waldo Emerson (18031882)