Orthogonal and Rotation Matrices
Every rotation maps an orthonormal basis of R3 to another orthonormal basis. Like any linear transformation of finite-dimensional vector spaces, a rotation can always be represented by a matrix. Let R be a given rotation. With respect to the standard basis of R3 the columns of R are given by . Since the standard basis is orthonormal, the columns of R form another orthonormal basis. This orthonormality condition can be expressed in the form
where RT denotes the transpose of R and I is the 3 × 3 identity matrix. Matrices for which this property holds are called orthogonal matrices. The group of all 3 × 3 orthogonal matrices is denoted O(3), and consists of all proper and improper rotations.
In addition to preserving length, proper rotations must also preserve orientation. A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det RT = det R implies (det R)2 = 1 so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).
Thus every rotation can be represented uniquely by an orthogonal matrix with unit determinant. Moreover, since composition of rotations corresponds to matrix multiplication, the rotation group is isomorphic to the special orthogonal group SO(3).
Improper rotations correspond to orthogonal matrices with determinant −1, and they do not form a group because the product of two improper rotations is a proper rotation.
Read more about this topic: Rotation Group SO(3)
Famous quotes containing the word rotation:
“The lazy manage to keep up with the earths rotation just as well as the industrious.”
—Mason Cooley (b. 1927)