Rotation Group SO(3) - Length and Angle

Length and Angle

Besides just preserving length, rotations also preserve the angles between vectors. This follows from the fact that the standard dot product between two vectors u and v can be written purely in terms of length:

It follows that any length-preserving transformation in R3 preserves the dot product, and thus the angle between vectors. Rotations are often defined as linear transformations that preserve the inner product on R3. This is equivalent to requiring them to preserve length.

Read more about this topic:  Rotation Group SO(3)

Famous quotes containing the words length and/or angle:

    A playwright ... is ... the litmus paper of the arts. He’s got to be, because if he isn’t working on the same wave length as the audience, no one would know what in hell he was talking about. He is a kind of psychic journalist, even when he’s great.
    Arthur Miller (b. 1915)

    It is a mistake, to think the same thing affects both sight and touch. If the same angle or square, which is the object of touch, be also the object of vision, what should hinder the blind man, at first sight, from knowing it?
    George Berkeley (1685–1753)