Romberg's Method - Method

Method

The method can be defined inductively

or

where

In big O notation, the error for R(n, m) is (Mysovskikh 2002):

The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2n + 1 points. Further extrapolations differ from Newton Cote's Formulas. In particular further Romberg extrapolations expand on Boole's rule in very slight ways, modifying weights into ratios similar as in Boole's rule. In contrast, further Newton Cotes methods produce increasingly differing weights, eventually leading to large positive and negative weights. This is indicative of how large degree interpolating polynomial Newton Cotes methods fail to converge for many integrals, while Romberg integration is more stable.

When function evaluations are expensive, it may be preferable to replace the polynomial interpolation of Richardson with the rational interpolation proposed by Bulirsch & Stoer (1967).

Read more about this topic:  Romberg's Method

Famous quotes containing the word method:

    The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.
    Isaiah Berlin (b. 1909)

    It is to be lamented that the principle of national has had very little nourishment in our country, and, instead, has given place to sectional or state partialities. What more promising method for remedying this defect than by uniting American women of every state and every section in a common effort for our whole country.
    Catherine E. Beecher (1800–1878)

    The method of authority will always govern the mass of mankind; and those who wield the various forms of organized force in the state will never be convinced that dangerous reasoning ought not to be suppressed in some way.
    Charles Sanders Peirce (1839–1914)