Rod Cell - Response To Light

Response To Light

In vertebrates, activation of a photoreceptor cell is actually a hyperpolarization (inhibition) of the cell. When they are not being stimulated, such as in the dark, rod cells and cone cells depolarize and release a neurotransmitter spontaneously. This neurotransmitter hyperpolarizes the bipolar cell. Bipolar cells exist between photoreceptors and ganglion cells and act to transmit signals from the photoreceptors to the ganglion cells. As a result of the bipolar cell being hyperpolarized, it does not release its transmitter at the bipolar-ganglion synapse and the synapse is not excited.

Activation of photopigments by light sends a signal by hyperpolarizing the rod cell, leading to the rod cell not sending its neurotransmitter, which leads to the bipolar cell then releasing its transmitter at the bipolar-ganglion synapse and exciting the synapse.

Depolarization of rod cells (causing release of their neurotransmitter) occurs because in the dark, cells have a relatively high concentration of cyclic guanosine 3'-5' monophosphate (cGMP), which opens ion channels (largely sodium channels, though calcium can enter through these channels as well). The positive charges of the ions that enter the cell down its electrochemical gradient change the cell's membrane potential, cause depolarization, and lead to the release of the neurotransmitter glutamate. Glutamate can depolarize some neurons and hyperpolarize others, allowing photoreceptors to interact in an antagonistic manner.

When light hits photoreceptive pigments within the photoreceptor cell, the pigment changes shape. The pigment, called rhodopsin (photopsin is found in cone cells) comprises a large protein called opsin (situated in the plasma membrane), attached to which is a covalently bound prosthetic group: an organic molecule called retinal (a derivative of vitamin A). The retinal exists in the 11-cis-retinal form when in the dark, and stimulation by light causes its structure to change to all-trans-retinal. This structural change causes a series of changes in the opsin that ultimately lead it to activate a regulatory protein called transducin (a type of G protein), which leads to the activation of cGMP phosphodiesterase, which breaks cGMP down into 5'-GMP. Reduction in cGMP allows the ion channels to close, preventing the influx of positive ions, hyperpolarizing the cell, and stopping the release of neurotransmitters (Kandel et al., 2000). Though cone cells primarily use the neurotransmitter substance acetylcholine, rod cells use a variety. The entire process by which light initiates a sensory response is called visual phototransduction.

Activation of a single unit of rhodopsin, the photosensitive pigment in rods, can lead to a large reaction in the cell because the signal is amplified. Once activated, rhodopsin can activate hundreds of transducin molecules, each of which in turn activates a phosphodiesterase molecule, which can break down over a thousand cGMP molecules per second (Kandel et al. 2000). Thus, rods can have a large response to a small amount of light.

As the retinal component of rhodopsin is derived from vitamin A, a deficiency of vitamin A causes a deficit in the pigment needed by rod cells. Consequently, fewer rod cells are able to sufficiently respond in darker conditions, and as the cone cells are poorly adapted for sight in the dark, blindness can result. This is night-blindness.

Read more about this topic:  Rod Cell

Famous quotes containing the words response to, response and/or light:

    Perhaps nothing is so depressing an index of the inhumanity of the male-supremacist mentality as the fact that the more genial human traits are assigned to the underclass: affection, response to sympathy, kindness, cheerfulness.
    Kate Millet (b. 1934)

    ... the most extreme conditions require the most extreme response, and for some individuals, the call to that response is vitality itself.... The integrity and self-esteem gained from winning the battle against extremity are the richest treasures in my life.
    Diana Nyad (b. 1949)

    Come hither, and I shall light a candle of understanding in thine heart, which shall not be put out.
    Apocrypha. 2 Esdras, 14:25.