Concrete surfaces (specifically, Portland cement concrete) are created using a concrete mix of Portland cement, coarse aggregate, sand and water. In virtually all modern mixes there will also be various admixtures added to increase workability, reduce the required amount of water, mitigate harmful chemical reactions and for other beneficial purposes. In many cases there will also be Portland cement substitutes added, such as fly ash. This can reduce the cost of the concrete and improve its physical properties. The material is applied in a freshly mixed slurry, and worked mechanically to compact the interior and force some of the cement slurry to the surface to produce a smoother, denser surface free from honeycombing. The water allows the mix to combine molecularly in a chemical reaction called hydration.
Concrete surfaces have been refined into three common types: jointed plain (JPCP), jointed reinforced (JRCP) and continuously reinforced (CRCP). The one item that distinguishes each type is the jointing system used to control crack development.
Jointed Plain Concrete Pavements (JPCP) contain enough joints to control the location of all the expected shrinkage cracks. The concrete cracks at the joints and not elsewhere in the slabs. Jointed plain pavements do not contain any steel reinforcement. However, there may be smooth steel bars at transverse joints and deformed steel bars at longitudinal joints. The spacing between transverse joints is typically about 15 feet (4.6 m) for slabs 7 to 12 inches (180 to 300 mm) thick. Today, a majority of the U.S. state agencies build jointed plain pavements.
Jointed Reinforced Concrete Pavements (JRCP) contain steel mesh reinforcement (sometimes called distributed steel). In jointed reinforced concrete pavements, designers increase the joint spacing purposely, and include reinforcing steel to hold together intermediate cracks in each slab. The spacing between transverse joints is typically 30 feet (9.1 m) or more. In the past, some agencies used a spacing as great as 100 feet (30 m). During construction of the interstate system, most agencies in the Eastern and Midwestern U.S. laid jointed-reinforced pavement. Today only a handful of agencies employ this design, and its use is generally not recommended as JPCP and CRCP offer better performance and are easier to repair.
Continuously Reinforced Concrete Pavements (CRCP) do not require any transverse contraction joints. Transverse cracks are expected in the slab, usually at intervals of 3 to 5 ft (0.91 to 1.5 m). CRCP pavements are designed with enough steel, 0.6–0.7% by cross-sectional area, so that cracks are held together tightly. Determining an appropriate spacing between the cracks is part of the design process for this type of pavement.
Continuously reinforced designs may cost slightly more than jointed reinforced or jointed plain designs due to increased quantities of steel. Often the cost of the steel is offset by the reduced cost of concrete because CRCP is nearly always significantly thinner then a JPCP designed for the same traffic loads. Properly designed JPCP and CRCP should demonstrate similar long-term performance and cost-effectiveness. A number of agencies have made policy decisions to use CRCP designs in their heavy urban traffic corridors.
One of the major advantages of concrete pavements is they are typically stronger and more durable than asphalt roadways. They also can be grooved to provide a durable skid-resistant surface. A notable disadvantage is that it can typically have a higher initial cost, as well as can be more time consuming to construct. This cost can typically be offset through the long life cycle of the pavement. Concrete pavement can be maintained over time utilizing a series of methods known as CPR (Concrete Pavement Restoration) which includes diamond grinding, dowel-bar retrofits, joint and crack sealing, cross-stitching, etc. Diamond grinding is also useful in reducing noise and restoring skid resistance in older concrete pavement.
The first street in the United States to be paved with concrete was Court Avenue in Bellefontaine, Ohio in 1891. The first mile of concrete pavement in the United States was on Woodward Avenue in Detroit, Michigan in 1909.
Read more about this topic: Road Surface
Famous quotes containing the word concrete:
“In his comprehensive delight in all experience Dickens resembles Walt Whitman, but he was innocent of that nebulous transcendentalism that blurred Whitmans universe into vast misty panoramas and left him, for all his huge democratic vistas, unable to tell a story or paint a single concrete human being.”
—Edgar Johnson (19121990)
“A doctor, like anyone else who has to deal with human beings, each of them unique, cannot be a scientist; he is either, like the surgeon, a craftsman, or, like the physician and the psychologist, an artist.... This means that in order to be a good doctor a man must also have a good character, that is to say, whatever weaknesses and foibles he may have, he must love his fellow human beings in the concrete and desire their good before his own.”
—W.H. (Wystan Hugh)
“Experience and imagination must enter into the very constitution of our thoughts involving concrete individuals.”
—Zeno Vendler (b. 1921)