Characteristics of Rivers
The size of rivers above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea.
The basin of a river is the expanse of country bounded by a watershed (called a "divide" in North America) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. River basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground very near the coast and flowing straight down into the sea, up to immense tracts of great continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. The size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it.
The rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. When two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. The fall available in a section of a river approximately corresponds to the slope of the country it traverses; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. Accordingly, in large basins, rivers in most cases begin as torrents with a very variable flow, and end as gently flowing rivers with a comparatively regular discharge.
The irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. In tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are very liable to be in flood in the winter. In fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from May to October and from November to April in the Northern hemisphere respectively; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. The only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers; their floods occur in the summer from the melting of snow and ice, as exemplified by the Rhône above the Lake of Geneva, and the Arve which joins it below. But even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the Rhone below Lyon has a more uniform discharge than most rivers, as the summer floods of the Arve are counteracted to a great extent by the low stage of the Saône flowing into the Rhone at Lyon, which has its floods in the winter when the Arve, on the contrary, is low.
Another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood-time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. The power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into shingle, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. Accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the Po River in Italy, for instance, pebbles and gravel are found for about 140 miles below Turin, sand along the next 100 miles, and silt and mud in the last 110 miles.
Read more about this topic: River Engineering
Famous quotes containing the words characteristics of and/or rivers:
“One of the characteristics of the dream is that nothing surprises us in it. With no regret, we agree to live in it with strangers, completely cut off from our habits and friends.”
—Jean Cocteau (18891963)
“By the rivers of Babylon, there we sat down, yea, we wept, then we remembered Zion.”
—Bible: Hebrew Psalm CXXXVII (l. CXXXVII, 1)