Tangent Spaces
See also: Zariski tangent spaceLocally ringed spaces have just enough structure to allow the meaningful definition of tangent spaces. Let X be locally ringed space with structure sheaf OX; we want to define the tangent space Tx at the point x ∈ X. Take the local ring (stalk) Rx at the point x, with maximal ideal mx. Then kx := Rx/mx is a field and mx/mx2 is a vector space over that field (the cotangent space). The tangent space Tx is defined as the dual of this vector space.
The idea is the following: a tangent vector at x should tell you how to "differentiate" "functions" at x, i.e. the elements of Rx. Now it is enough to know how to differentiate functions whose value at x is zero, since all other functions differ from these only by a constant, and we know how to differentiate constants. So we only need to worry about mx. Furthermore, if two functions are given with value zero at x, then their product has derivative 0 at x, by the product rule. So we only need to know how to assign "numbers" to the elements of mx/mx2, and this is what the dual space does.
Read more about this topic: Ringed Space
Famous quotes containing the word spaces:
“through the spaces of the dark
Midnight shakes the memory
As a madman shakes a dead geranium.”
—T.S. (Thomas Stearns)