Ringed Space - Examples

Examples

An arbitrary topological space X can be considered a locally ringed space by taking OX to be the sheaf of real-valued (or complex-valued) continuous functions on open subsets of X (there may exist continuous functions over open subsets of X which are not the restriction of any continuous function over X). The stalk at a point x can be thought of as the set of all germs of continuous functions at x; this is a local ring with maximal ideal consisting of those germs whose value at x is 0.

If X is a manifold with some extra structure, we can also take the sheaf of differentiable, or complex-analytic functions. Both of these give rise to locally ringed spaces.

If X is an algebraic variety carrying the Zariski topology, we can define a locally ringed space by taking OX(U) to be the ring of rational functions defined on the Zariski-open set U which do not blow up (become infinite) within U. The important generalization of this example is that of the spectrum of any commutative ring; these spectra are also locally ringed spaces. Schemes are locally ringed spaces obtained by "gluing together" spectra of commutative rings.

Read more about this topic:  Ringed Space

Famous quotes containing the word examples:

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)