Ringed Space - Definition

Definition

Formally, a ringed space (X, OX) is a topological space X together with a sheaf of rings OX on X. The sheaf OX is called the structure sheaf of X.

A locally ringed space is a ringed space (X, OX) such that all stalks of OX are local rings (i.e. they have unique maximal ideals). Note that it is not required that OX(U) be a local ring for every open set U. In fact, that is almost never going to be the case.

Read more about this topic:  Ringed Space

Famous quotes containing the word definition:

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)