Planar Rigid Body Dynamics
If a rigid system of particles moves such that the trajectory of every particle is parallel to a fixed plane, the system is said to be constrained to planar movement. In this case, Newton's laws for a rigid system of N particles, Pi, i=1,...,N, simplify because there is no movement in the k direction. Determine the resultant force and torque at a reference point R, to obtain
where ri denotes the planar trajectory of each particle.
The kinematics of a rigid body yields the formula for the acceleration of the particle Pi in terms of the position R and acceleration A of the reference particle as well as the angular velocity vector ω and angular acceleration vector α of the rigid system of particles as,
For systems that are constrained to planar movement, the angular velocity and angular acceleration vectors are directed along k perpendicular to the plane of movement, which simplifies this acceleration equation. In this case, the acceleration vectors can be simplified by introducing the unit vectors ei from the reference point R to a point ri and the unit vectors ti=kxei, so
This yields the resultant force on the system as
and torque as
where eixei=0, and eixti=k is the unit vector perpendicular to the plane for all of the particles Pi.
Use the center of mass C as the reference point, so these equations for Newton's laws simplify to become
where M is the total mass and IC is the moment of inertia about an axis perpendicular to the movement of the rigid system and through the center of mass.
Read more about this topic: Rigid Body Dynamics
Famous quotes containing the words rigid, body and/or dynamics:
“Pain hardens, and great pain hardens greatly, whatever the comforters say, and suffering does not ennoble, though it may occasionally lend a certain rigid dignity of manner to the suffering frame.”
—A.S. (Antonia Susan)
“In youth the human body drew me and was the object of my secret and natural dreams. But body after body has taken away from me that sensual phosphorescence which my youth delighted in. Within me is no disturbing interplay now, but only the steady currents of adaptation and of sympathy.”
—Haniel Long (18881956)
“Anytime we react to behavior in our children that we dislike in ourselves, we need to proceed with extreme caution. The dynamics of everyday family life also have a way of repeating themselves.”
—Cathy Rindner Tempelsman (20th century)