Direction Associated With A Rotation
A different form of the right-hand rule, sometimes called the right-hand grip rule or the corkscrew-rule or the right-hand thumb rule, is used in situations where a vector must be assigned to the rotation of a body, a magnetic field or a fluid. Alternatively, when a rotation is specified by a vector, and it is necessary to understand the way in which the rotation occurs, the right-hand grip rule is applicable.
This version of the rule is used in two complementary applications of Ampère's circuital law:
- An electric current passes through a solenoid, resulting in a magnetic field. When you wrap your right hand around the solenoid with your fingers in the direction of the conventional current, your thumb points in the direction of the magnetic north pole.
- An electric current passes through a straight wire. Here, the thumb points in the direction of the conventional current (from positive to negative), and the fingers point in the direction of the magnetic lines of flux.
The principle is also used to determine the direction of the torque vector. If you grip the imaginary axis of rotation of the rotational force so that your fingers point in the direction of the force, then the extended thumb points in the direction of the torque vector.
The right-hand grip rule is a convention derived from the right-hand rule convention for vectors. When applying the rule to current in a straight wire for example, the direction of the magnetic field (counterclockwise instead of clockwise when viewed from the tip of the thumb) is a result of this convention and not an underlying physical phenomenon.
Read more about this topic: Right-hand Rule
Famous quotes containing the words direction and/or rotation:
“Dressed to die, the sensual strut begun,
With my red veins full of money,
In the final direction of the elementary town
I advance for as long as forever is.”
—Dylan Thomas (19141953)
“The lazy manage to keep up with the earths rotation just as well as the industrious.”
—Mason Cooley (b. 1927)