The Hilbert Space Representation Theorem
This theorem establishes an important connection between a Hilbert space and its (continuous) dual space: if the underlying field is the real numbers, the two are isometrically isomorphic; if the field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural one as will be described next.
Let H be a Hilbert space, and let H* denote its dual space, consisting of all continuous linear functionals from H into the field R or C. If x is an element of H, then the function φx, defined by
where denotes the inner product of the Hilbert space, is an element of H*. The Riesz representation theorem states that every element of H* can be written uniquely in this form.
Theorem. The mapping Φ: H → H* defined by Φ(x) = φx is an isometric (anti-) isomorphism, meaning that:
- Φ is bijective.
- The norms of x and Φ(x) agree: .
- Φ is additive: .
- If the base field is R, then for all real numbers λ.
- If the base field is C, then for all complex numbers λ, where denotes the complex conjugation of λ.
The inverse map of Φ can be described as follows. Given an element φ of H*, the orthogonal complement of the kernel of φ is a one-dimensional subspace of H. Take a non-zero element z in that subspace, and set . Then Φ(x) = φ.
Historically, the theorem is often attributed simultaneously to Riesz and Fréchet in 1907 (see references).
In the mathematical treatment of quantum mechanics, the theorem can be seen as a justification for the popular bra-ket notation. When the theorem holds, every ket has a corresponding bra, and the correspondence is unambiguous.
Read more about this topic: Riesz Representation Theorem
Famous quotes containing the words space and/or theorem:
“The true gardener then brushes over the ground with slow and gentle hand, to liberate a space for breath round some favourite; but he is not thinking about destruction except incidentally. It is only the amateur like myself who becomes obsessed and rejoices with a sadistic pleasure in weeds that are big and bad enough to pull, and at last, almost forgetting the flowers altogether, turns into a Reformer.”
—Freya Stark (18931993)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)