Classical Theorems in Riemannian Geometry
What follows is an incomplete list of the most classical theorems in Riemannian geometry. The choice is made depending on its importance, beauty, and simplicity of formulation. Most of the results can be found in the classic monograph by Jeff Cheeger and D. Ebin (see below).
The formulations given are far from being very exact or the most general. This list is oriented to those who already know the basic definitions and want to know what these definitions are about.
Read more about this topic: Riemannian Geometry
Famous quotes containing the words classical and/or geometry:
“The basic difference between classical music and jazz is that in the former the music is always greater than its performanceBeethovens Violin Concerto, for instance, is always greater than its performancewhereas the way jazz is performed is always more important than what is being performed.”
—André Previn (b. 1929)
“The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Grays Anatomy.”
—J.G. (James Graham)