Definition
The Riemann zeta function ζ(s) is a function of a complex variable s = σ + it (here, s, σ and t are traditional notations associated with the study of the ζ-function). The following infinite series converges for all complex numbers s with real part greater than 1, and defines ζ(s) in this case:
The Riemann zeta function is defined as the analytic continuation of the function defined for σ > 1 by the sum of the preceding series.
Leonhard Euler considered the above series in 1740 for positive integer values of s, and later Chebyshev extended the definition to real s > 1.
The above series is a prototypical Dirichlet series that converges absolutely to an analytic function for s such that σ > 1 and diverges for all other values of s. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values s ≠ 1. For s = 1 the series is the harmonic series which diverges to +∞, and
Thus the Riemann zeta function is a meromorphic function on the whole complex s-plane, which is holomorphic everywhere except for a simple pole at s = 1 with residue 1.
Read more about this topic: Riemann Zeta Function
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)