As A Sphere
The Riemann sphere can be visualized as the unit sphere x2 + y2 + z2 = 1 in the three-dimensional real space R3. To this end, consider the stereographic projection from the unit sphere minus the point (0, 0, 1) onto the plane z = 0, which we identify with the complex plane by ζ = x + iy. In Cartesian coordinates (x, y, z) and spherical coordinates (φ, θ) on the sphere (with φ the zenith and θ the azimuth), the projection is
Similarly, stereographic projection from (0, 0, −1) onto the plane z = 0, identified with another copy of the complex plane by ξ = x - i y, is written
In order to cover the unit sphere, one needs the two stereographic projections: the first will cover the whole sphere except the point (0,0,1) and the second except the point (0,0,-1). Hence, one needs two complex planes, one for each projection, which can be intuitively seen as glued back-to-back at z=0. Note that the two complex planes are identified differently with the plane z = 0. An orientation-reversal is necessary to maintain consistent orientation on the sphere, and in particular complex conjugation causes the transition maps to be holomorphic.
The transition maps between ζ-coordinates and ξ-coordinates are obtained by composing one projection with the inverse of the other. They turn out to be ζ = 1/ξ and ξ = 1 /ζ, as described above. Thus the unit sphere is diffeomorphic to the Riemann sphere.
Under this diffeomorphism, the unit circle in the ζ-chart, the unit circle in the ξ-chart, and the equator of the unit sphere are all identified. The unit disk |ζ| < 1 is identified with the southern hemisphere z < 0, while the unit disk |ξ| < 1 is identified with the northern hemisphere z > 0.
Read more about this topic: Riemann Sphere
Famous quotes containing the word sphere:
“Prayer is the fair and radiant daughter of all the human virtues, the arch connecting heaven and earth, the sweet companion that is alike the lion and the dove; and prayer will give you the key of heaven. As pure and as bold as innocence, as strong as all things are that are entire and single, this fair and invincible queen rests on the material world; she has taken possession of it; for, like the sun, she casts about it a sphere of light.”
—Honoré De Balzac (17991850)