Riemann Hypothesis - Arguments For and Against The Riemann Hypothesis

Arguments For and Against The Riemann Hypothesis

Mathematical papers about the Riemann hypothesis tend to be cautiously noncommittal about its truth. Of authors who express an opinion, most of them, such as Riemann (1859) or Bombieri (2000), imply that they expect (or at least hope) that it is true. The few authors who express serious doubt about it include Ivić (2008) who lists some reasons for being skeptical, and Littlewood (1962) who flatly states that he believes it to be false, and that there is no evidence whatever for it and no imaginable reason for it to be true. The consensus of the survey articles (Bombieri 2000, Conrey 2003, and Sarnak 2008) is that the evidence for it is strong but not overwhelming, so that while it is probably true there is some reasonable doubt about it.

Some of the arguments for (or against) the Riemann hypothesis are listed by Sarnak (2008), Conrey (2003), and Ivić (2008), and include the following reasons.

  • Several analogues of the Riemann hypothesis have already been proved. The proof of the Riemann hypothesis for varieties over finite fields by Deligne (1974) is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with automorphic forms satisfy a Riemann hypothesis, which includes the classical Riemann hypothesis as a special case. Similarly Selberg zeta functions satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. However there are also some major differences; for example they are not given by Dirichlet series. The Riemann hypothesis for the Goss zeta function was proved by Sheats (1998). In contrast to these positive examples, however, some Epstein zeta functions do not satisfy the Riemann hypothesis, even though they have an infinite number of zeros on the critical line (Titchmarsh 1986). These functions are quite similar to the Riemann zeta function, and have a Dirichlet series expansion and a functional equation, but the ones known to fail the Riemann hypothesis do not have an Euler product and are not directly related to automorphic representations.
  • The numerical verification that many zeros lie on the line seems at first sight to be strong evidence for it. However analytic number theory has had many conjectures supported by large amounts of numerical evidence that turn out to be false. See Skewes number for a notorious example, where the first exception to a plausible conjecture related to the Riemann hypothesis probably occurs around 10316; a counterexample to the Riemann hypothesis with imaginary part this size would be far beyond anything that can currently be computed. The problem is that the behavior is often influenced by very slowly increasing functions such as log log T, that tend to infinity, but do so so slowly that this cannot be detected by computation. Such functions occur in the theory of the zeta function controlling the behavior of its zeros; for example the function S(T) above has average size around (log log T)1/2 . As S(T) jumps by at least 2 at any counterexample to the Riemann hypothesis, one might expect any counterexamples to the Riemann hypothesis to start appearing only when S(T) becomes large. It is never much more than 3 as far as it has been calculated, but is known to be unbounded, suggesting that calculations may not have yet reached the region of typical behavior of the zeta function.
  • Denjoy's probabilistic argument for the Riemann hypothesis (Edwards 1974) is based on the observation that if μ(x) is a random sequence of "1"s and "−1"s then, for every ε > 0, the partial sums
(the values of which are positions in a simple random walk) satisfy the bound
with probability 1. The Riemann hypothesis is equivalent to this bound for the Möbius function μ and the Mertens function M derived in the same way from it. In other words, the Riemann hypothesis is in some sense equivalent to saying that μ(x) behaves like a random sequence of coin tosses. When μ(x) is non-zero its sign gives the parity of the number of prime factors of x, so informally the Riemann hypothesis says that the parity of the number of prime factors of an integer behaves randomly. Such probabilistic arguments in number theory often give the right answer, but tend to be very hard to make rigorous, and occasionally give the wrong answer for some results, such as Maier's theorem.
  • The calculations in Odlyzko (1987) show that the zeros of the zeta function behave very much like the eigenvalues of a random Hermitian matrix, suggesting that they are the eigenvalues of some self-adjoint operator, which would imply the Riemann hypothesis. However all attempts to find such an operator have failed.
  • There are several theorems, such as Goldbach's conjecture for sufficiently large odd numbers, that were first proved using the generalized Riemann hypothesis, and later shown to be true unconditionally. This could be considered as weak evidence for the generalized Riemann hypothesis, as several of its "predictions" turned out to be true.
  • Lehmer's phenomenon (Lehmer 1956) where two zeros are sometimes very close is sometimes given as a reason to disbelieve in the Riemann hypothesis. However one would expect this to happen occasionally just by chance even if the Riemann hypothesis were true, and Odlyzko's calculations suggest that nearby pairs of zeros occur just as often as predicted by Montgomery's conjecture.
  • Patterson (1988) suggests that the most compelling reason for the Riemann hypothesis for most mathematicians is the hope that primes are distributed as regularly as possible.

Read more about this topic:  Riemann Hypothesis

Famous quotes containing the words arguments for, arguments and/or hypothesis:

    Compared to football, baseball is almost an Oriental game, minimizing individual stardom, requiring a wide range of aggressive and defensive skills, and filled with long periods of inaction and irresolution. It has no time limitations. Football, on the other hand, has immediate goals, resolution on every single play, and a lot of violence—itself a highlight. It has clearly distinguishable hierarchies: heroes and drones.
    Jerry Mander, U.S. advertising executive, author. Four Arguments for the Elimination of Television, ch. 15, Morrow (1978)

    What can you do against the lunatic who is more intelligent than yourself, who gives your arguments a fair hearing and then simply persists in his lunacy.
    George Orwell (1903–1950)

    Oversimplified, Mercier’s Hypothesis would run like this: “Wit is always absurd and true, humor absurd and untrue.”
    Vivian Mercier (b. 1919)