Riemann Curvature Tensor - Special Cases

Special Cases

Surfaces

For a two-dimensional surface, the Bianchi identities imply that the Riemann tensor can be expressed as

where is the metric tensor and is a function called the Gaussian curvature and a, b, c and d take values either 1 or 2. The Riemann tensor has only one functionally independent component. The Gaussian curvature coincides with the sectional curvature of the surface. It is also exactly half the scalar curvature of the 2-manifold, while the Ricci curvature tensor of the surface is simply given by

Space forms

A Riemannian manifold is a space form if its sectional curvature is equal to a constant K. The Riemann tensor of a space form is given by

Conversely, except in dimension 2, if the curvature of a Riemannian manifold has this form for some function K, then the Bianchi identities imply that K is constant and thus that the manifold is (locally) a space form.

Read more about this topic:  Riemann Curvature Tensor

Famous quotes containing the words special and/or cases:

    I think those Southern writers [William Faulkner, Carson McCullers] have analyzed very carefully the buildup in the South of a special consciousness brought about by the self- condemnation resulting from slavery, the humiliation following the War Between the States and the hope, sometimes expressed timidly, for redemption.
    Jimmy Carter (James Earl Carter, Jr.)

    ... in all cases of monstrosity at birth anaesthetics should be applied by doctors publicly appointed for that purpose... Every successive year would see fewer of the unfit born, and finally none. But, it may be urged, this is legalized infanticide. Assuredly it is; and it is urgently needed.
    Tennessee Claflin (1846–1923)