Special Cases
- Surfaces
For a two-dimensional surface, the Bianchi identities imply that the Riemann tensor can be expressed as
where is the metric tensor and is a function called the Gaussian curvature and a, b, c and d take values either 1 or 2. The Riemann tensor has only one functionally independent component. The Gaussian curvature coincides with the sectional curvature of the surface. It is also exactly half the scalar curvature of the 2-manifold, while the Ricci curvature tensor of the surface is simply given by
- Space forms
A Riemannian manifold is a space form if its sectional curvature is equal to a constant K. The Riemann tensor of a space form is given by
Conversely, except in dimension 2, if the curvature of a Riemannian manifold has this form for some function K, then the Bianchi identities imply that K is constant and thus that the manifold is (locally) a space form.
Read more about this topic: Riemann Curvature Tensor
Famous quotes containing the words special and/or cases:
“I think those Southern writers [William Faulkner, Carson McCullers] have analyzed very carefully the buildup in the South of a special consciousness brought about by the self- condemnation resulting from slavery, the humiliation following the War Between the States and the hope, sometimes expressed timidly, for redemption.”
—Jimmy Carter (James Earl Carter, Jr.)
“I want in all cases to do right.”
—Abraham Lincoln (18091865)