The Richardson number is named after Lewis Fry Richardson (1881 – 1953). It is the dimensionless number that expresses the ratio of potential to kinetic energy
where g is the acceleration due to gravity, h a representative vertical lengthscale, and u a representative speed.
When considering flows in which density differences are small (the Boussinesq approximation), it is common to use the reduced gravity g' and the relevant parameter is the densimetric Richardson number
which is used frequently when considering atmospheric or oceanic flows.
If the Richardson number is much less than unity, buoyancy is unimportant in the flow. If it is much greater than unity, buoyancy is dominant (in the sense that there is insufficient kinetic energy to homogenize the fluids).
If the Richardson number is of order unity, then the flow is likely to be buoyancy-driven: the energy of the flow derives from the potential energy in the system originally.
Read more about Richardson Number: Aviation, Thermal Convection, Oceanography
Famous quotes containing the words richardson and/or number:
“Women love to be called cruel, even when they are kindest.”
—Samuel Richardson (16891761)
“Can a woman become a genius of the first class? Nobody can know unless women in general shall have equal opportunity with men in education, in vocational choice, and in social welcome of their best intellectual work for a number of generations.”
—Anna Garlin Spencer (18511931)