General Formula
Let A(h) be an approximation of A that depends on a positive step size h with an error formula of the form
where the ai are unknown constants and the ki are known constants such that hki > hki+1.
The exact value sought can be given by
which can be simplified with Big O notation to be
Using the step sizes h and h / t for some t, the two formulas for A are:
Multiplying the second equation by tk0 and subtracting the first equation gives
which can be solved for A to give
By this process, we have achieved a better approximation of A by subtracting the largest term in the error which was O(hk0). This process can be repeated to remove more error terms to get even better approximations.
A general recurrence relation can be defined for the approximations by
such that
with .
The Richardson extrapolation can be considered as a linear sequence transformation.
Additionally, the general formula can be used to estimate k0 when neither its value nor A is known a priori. Such a technique can be useful for quantifying an unknown rate of convergence. Given approximations of A from three distinct step sizes h, h / t, and h / s, the exact relationship
yields an approximate relationship
which can be solved numerically to estimate k0.
Read more about this topic: Richardson Extrapolation
Famous quotes containing the words general and/or formula:
“They make a great ado nowadays about hard times; but I think that ... this general failure, both private and public, is rather occasion for rejoicing, as reminding us whom we have at the helm,that justice is always done. If our merchants did not most of them fail, and the banks too, my faith in the old laws of the world would be staggered.”
—Henry David Thoreau (18171862)
“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.”
—Pierre Simon De Laplace (17491827)