Richardson Extrapolation - General Formula

General Formula

Let A(h) be an approximation of A that depends on a positive step size h with an error formula of the form

where the ai are unknown constants and the ki are known constants such that hki > hki+1.

The exact value sought can be given by

which can be simplified with Big O notation to be

Using the step sizes h and h / t for some t, the two formulas for A are:

Multiplying the second equation by tk0 and subtracting the first equation gives

which can be solved for A to give

By this process, we have achieved a better approximation of A by subtracting the largest term in the error which was O(hk0). This process can be repeated to remove more error terms to get even better approximations.

A general recurrence relation can be defined for the approximations by

such that

with .

The Richardson extrapolation can be considered as a linear sequence transformation.

Additionally, the general formula can be used to estimate k0 when neither its value nor A is known a priori. Such a technique can be useful for quantifying an unknown rate of convergence. Given approximations of A from three distinct step sizes h, h / t, and h / s, the exact relationship

yields an approximate relationship

which can be solved numerically to estimate k0.

Read more about this topic:  Richardson Extrapolation

Famous quotes containing the words general and/or formula:

    There are two great rules in life, the one general and the other particular. The first is that every one can in the end get what he wants if he only tries. This is the general rule. The particular rule is that every individual is more or less of an exception to the general rule.
    Samuel Butler (1835–1902)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)