Richardson Extrapolation - General Formula

General Formula

Let A(h) be an approximation of A that depends on a positive step size h with an error formula of the form

where the ai are unknown constants and the ki are known constants such that hki > hki+1.

The exact value sought can be given by

which can be simplified with Big O notation to be

Using the step sizes h and h / t for some t, the two formulas for A are:

Multiplying the second equation by tk0 and subtracting the first equation gives

which can be solved for A to give

By this process, we have achieved a better approximation of A by subtracting the largest term in the error which was O(hk0). This process can be repeated to remove more error terms to get even better approximations.

A general recurrence relation can be defined for the approximations by

such that

with .

The Richardson extrapolation can be considered as a linear sequence transformation.

Additionally, the general formula can be used to estimate k0 when neither its value nor A is known a priori. Such a technique can be useful for quantifying an unknown rate of convergence. Given approximations of A from three distinct step sizes h, h / t, and h / s, the exact relationship

yields an approximate relationship

which can be solved numerically to estimate k0.

Read more about this topic:  Richardson Extrapolation

Famous quotes containing the words general and/or formula:

    Even more important than the discovery of Columbus, which we are gathered together to celebrate, is the fact that the general government has just discovered women.
    Bertha Honore Potter Palmer (1849–1918)

    I feel like a white granular mass of amorphous crystals—my formula appears to be isomeric with Spasmotoxin. My aurochloride precipitates into beautiful prismatic needles. My Platinochloride develops octohedron crystals,—with a fine blue florescence. My physiological action is not indifferent. One millionth of a grain injected under the skin of a frog produced instantaneous death accompanied by an orange blossom odor.
    Lafcadio Hearn (1850–1904)