Work in Population Genetics
Lewontin has worked in both theoretical and experimental population genetics. A hallmark of his work has been an interest in new technology. He was the first person to do a computer simulation of the behavior of a single locus (previous simulation work having been of models with multiple loci). In 1960 he and Ken-Ichi Kojima were the first population geneticists to give the equations for change of haplotype frequencies with interacting natural selection at two loci. This set off a wave of theoretical work on two-locus selection in the 1960s and 1970s. Their paper gave a theoretical derivation of the equilibria expected, and also investigated the dynamics of the model by computer iteration. Lewontin later introduced the D' measure of linkage disequilibrium. (An achievement that he would be less happy to claim is that he introduced the name "linkage disequilibrium" itself, one about which many population geneticists have been unenthusiastic).
In 1966, he and Jack Hubby published a paper that revolutionized population genetics. They used protein gel electrophoresis to survey dozens of loci in Drosophila pseudoobscura, and reported that a large fraction of the loci were polymorphic, and that at the average locus there was about a 15% chance that the individual was heterozygous. (Harry Harris reported similar results for humans at about the same time). Previous work with gel electrophoresis had been reports of variation in single loci and did not give any sense of how common variation was.
Lewontin and Hubby's paper also discussed the possible explanation of the high levels of variability by either balancing selection or neutral mutation. Although they did not commit themselves to advocating neutrality, this was the first clear statement of the neutral theory for levels of variability within species. Lewontin and Hubby's paper had great impact—the discovery of high levels of molecular variability gave population geneticists ample material to work on, and gave them access to variation at single loci. The possible theoretical explanations of this rampant polymorphism became the focus of most population genetics work thereafter. Martin Kreitman was later to do a pioneering survey of population-level variability in DNA sequences while a Ph.D. student in Lewontin's lab.
Read more about this topic: Richard Lewontin
Famous quotes containing the words work and/or population:
“Shopping seemed to take an entirely too important place in womens lives. You never saw men milling around in mens departments. They made quick work of it. I used to wonder if shopping was a form of escape for women who had no worthwhile interests.”
—Mary Barnett Gilson (1877?)
“This was the Eastham famous of late years for its camp- meetings, held in a grove near by, to which thousands flock from all parts of the Bay. We conjectured that the reason for the perhaps unusual, if not unhealthful development of the religious sentiment here, was the fact that a large portion of the population are women whose husbands and sons are either abroad on the sea, or else drowned, and there is nobody but they and the ministers left behind.”
—Henry David Thoreau (18171862)