Obtaining Solutions By Quadrature
The correspondence between Riccati equations and second-order linear ODEs has other consequences. For example, if one solution of a 2nd order ODE is known, then it is known that another solution can be obtained by quadrature, i.e., a simple integration. The same holds true for the Riccati equation. In fact, if one particular solution can be found, the general solution is obtained as
Substituting
in the Riccati equation yields
and since
or
which is a Bernoulli equation. The substitution that is needed to solve this Bernoulli equation is
Substituting
directly into the Riccati equation yields the linear equation
A set of solutions to the Riccati equation is then given by
where z is the general solution to the aforementioned linear equation.
Read more about this topic: Riccati Equation
Famous quotes containing the words obtaining and/or solutions:
“If, after obtaining Buddhahood, anyone in my land
gets tossed in jail on a vagrancy rap, may I
not attain highest perfect enlightenment.”
—Gary Snyder (b. 1930)
“Science fiction writers foresee the inevitable, and although problems and catastrophes may be inevitable, solutions are not.”
—Isaac Asimov (19201992)