Additional Systems
- Weaker systems than recursive comprehension can be defined. The weak system RCA*
0 consists of elementary function arithmetic EFA (the basic axioms plus Δ00 induction in the enriched language with an exponential operation) plus Δ01 comprehension. Over RCA*
0, recursive comprehension as defined earlier (that is, with Σ01 induction) is equivalent to the statement that a polynomial (over a countable field) has only finitely many roots and to the classification theorem for finitely generated Abelian groups. The system RCA*
0 has the same proof theoretic ordinal ω3 as EFA and is conservative over EFA for Π0
2 sentences.
- Weak Weak König's Lemma is the statement that a subtree of the infinite binary tree having no infinite paths has an asymptotically vanishing proportion of the leaves at length n (with a uniform estimate as to how many leaves of length n exist). An equivalent formulation is that any subset of Cantor space that has positive measure is nonempty (this is not provable in RCA0). WWKL0 is obtained by adjoining this axiom to RCA0. It is equivalent to the statement that if the unit real interval is covered by a sequence of intervals then the sum of their lengths is at least one. The model theory of WWKL0 is closely connected to the theory of algorithmically random sequences. In particular, an ω-model of RCA0 satisfies weak weak König's lemma if and only if for every set X there is a set Y which is 1-random relative to X.
- DNR (short for "diagonally non-recursive") adds to RCA0 an axiom asserting the existence of a diagonally non-recursive function relative to every set. That is, DNR states that, for any set A, there exists a total function f such that for all e the eth partial recursive function with oracle A is not equal to f. DNR is strictly weaker than WWKL (Lempp et al., 2004).
- Δ11-comprehension is in certain ways analogous to arithmetical transfinite recursion as recursive comprehension is to weak König's lemma. It has the hyperarithmetical sets as minimal ω-model. Arithmetical transfinite recursion proves Δ11-comprehension but not the other way around.
- Σ11-choice is the statement that if η(n,X) is a Σ11 formula such that for each n there exists an X satisfying η then there is a sequence of sets Xn such that η(n,Xn) holds for each n. Σ11-choice also has the hyperarithmetical sets as minimal ω-model. Arithmetical transfinite recursion proves Σ11-choice but not the other way around.
Read more about this topic: Reverse Mathematics
Famous quotes containing the words additional and/or systems:
“The world will never be long without some good reason to hate the unhappy; their real faults are immediately detected, and if those are not sufficient to sink them into infamy, an additional weight of calumny will be superadded.”
—Samuel Johnson (17091784)
“The only people who treasure systems are those whom the whole truth evades, who want to catch it by the tail. A system is just like truths tail, but the truth is like a lizard. It will leave the tail in your hand and escape; it knows that it will soon grow another tail.”
—Ivan Sergeevich Turgenev (18181883)