Reuleaux Triangle - Three-dimensional Version

Three-dimensional Version

The intersection of four spheres of radius s centered at the vertices of a regular tetrahedron with side length s is called the Reuleaux tetrahedron, but is not a surface of constant width. It can, however, be made into a surface of constant width, called Meissner's tetrahedron, by replacing its edge arcs by curved surface patches. Alternatively, the surface of revolution of a Reuleaux triangle through one of its symmetry axes forms a surface of constant width, with minimum volume among all known surfaces of revolution of given constant width (Campi, Colesanti & Gronchi (1996)).

Read more about this topic:  Reuleaux Triangle

Famous quotes containing the word version:

    If the only new thing we have to offer is an improved version of the past, then today can only be inferior to yesterday. Hypnotised by images of the past, we risk losing all capacity for creative change.
    Robert Hewison (b. 1943)