Mammals
In mammals, an elegant rete mirabile in the efferent arterioles of juxtamedullary glomeruli is important in maintaining the hypertonicity of the renal cortex. It is the hypertonicity of this zone, resorbing water osmotically from the renal collecting ducts as they exit the kidney, that makes possible the excretion of a hypertonic urine and maximum conservation of body water.
Vascular retia mirabilia are also found in the limbs of a range of mammals. These reduce the temperature in the extremities. Some of these probably function to prevent heat loss in cold conditions by reducing the temperature gradient between the limb and the environment. Others reduce the temperature of the testes increasing their productivity. In the neck of the dog, a rete mirabile protects the brain when the body overheats during hunting; the venous blood is cooled down by panting before entering the net.
Retia mirabilia also occur frequently in mammals that burrow, dive or have arboreal lifestyles that involve clinging with the limbs for lengthy periods. In these cases, the rete mirabile may lower limb temperature and therefore the metabolic requirement for oxygen and nutrients in the tissues of the limb. This would be desirable when the blood supply to the limb is limited as a result of a "diving reflex" diverting blood away from the limbs during diving or burrowing or because of postural restrictions on blood supply in the case of clinging, arboreal animals. In the last case, slow-moving arboreal mammals such as sloths, lorises and arboreal anteaters possess retia of the highly developed type known as vascular bundles. The structure and function of these mammalian retia mirabilia are reviewed by O'Dea (1990).
In giraffes, a rete mirabile in the neck equalizes blood pressure when the animal bends down to drink.
The ancient physician Galen mistakenly thought that humans also have a rete mirabile in the neck, apparently based on dissection of sheep and misidentifying the results with the human carotid sinus, and ascribed important properties to it; it fell to Berengario da Carpi first, and then to Vesalius to demonstrate the error.
Read more about this topic: Rete Mirabile