Restricted Randomization - Example of Nested Data

Example of Nested Data

Consider a batch process that uses 7 monitor wafers in each run. The plan further calls for measuring a response variable on each wafer at each of 9 sites. The organization of the sampling plan has a hierarchical or nested structure: the batch run is the topmost level, the second level is an individual wafer, and the third level is the site on the wafer.

The total amount of data generated per batch run will be 7 · 9 = 63 observations. One approach to analyzing these data would be to compute the mean of all these points as well as their standard deviation and use those results as responses for each run.

Analyzing the data as suggested above is not absolutely incorrect, but doing so loses information that one might otherwise obtain. For example, site 1 on wafer 1 is physically different from site 1 on wafer 2 or on any other wafer. The same is true for any of the sites on any of the wafers. Similarly, wafer 1 in run 1 is physically different from wafer 1 in run 2, and so on. To describe this situation one says that sites are nested within wafers while wafers are nested within runs.

As a consequence of this nesting, there are restrictions on the randomization that can occur in the experiment. This kind of restricted randomization always produces nested sources of variation. Examples of nested variation or restricted randomization discussed on this page are split-plot and strip-plot designs.

The objective of an experiment with this type of sampling plan is generally to reduce the variability due to sites on the wafers and wafers within runs (or batches) in the process. The sites on the wafers and the wafers within a batch become sources of unwanted variation and an investigator seeks to make the system robust to those sources—in other words, one could treat wafers and sites as noise factors in such an experiment.

Because the wafers and the sites represent unwanted sources of variation and because one of the objectives is to reduce the process sensitivity to these sources of variation, treating wafers and sites as random effects in the analysis of the data is a reasonable approach. In other words, nested variation is often another way of saying nested random effects or nested sources of noise. If the factors "wafers" and "sites" are treated as random effects, then it is possible to estimate a variance component due to each source of variation through analysis of variance techniques. Once estimates of the variance components have been obtained, an investigator is then able to determine the largest source of variation in the process under experimentation, and also determine the magnitudes of the other sources of variation in relation to the largest source.

Read more about this topic:  Restricted Randomization

Famous quotes containing the words nested and/or data:

    I was asking for something specific and perfect for my city,
    Whereupon lo! upsprang the aboriginal name.
    Now I see what there is in a name, a word, liquid, sane, unruly,
    musical, self-sufficient,
    I see that the word of my city is that word from of old,
    Because I see that word nested in nests of water-bays, superb,
    Rich, hemm’d thick all around with sailships and steamships, an
    island sixteen miles long, solid-founded,
    Walt Whitman (1819–1892)

    To write it, it took three months; to conceive it three minutes; to collect the data in it—all my life.
    F. Scott Fitzgerald (1896–1940)