Example
Consider the affine line A1(k) = Spec(k) over a field k. If k is algebraically closed, there are exactly two types of prime ideals, namely
- (t − a), a ∈ k
- (0), the zero-ideal.
The residue fields are
- , the function field over k in one variable.
If k is not algebraically closed, then more types arise, for example if k = R, then the prime ideal (x2 + 1) has residue field isomorphic to C.
Read more about this topic: Residue Field
Famous quotes containing the word example:
“Our intellect is not the most subtle, the most powerful, the most appropriate, instrument for revealing the truth. It is life that, little by little, example by example, permits us to see that what is most important to our heart, or to our mind, is learned not by reasoning but through other agencies. Then it is that the intellect, observing their superiority, abdicates its control to them upon reasoned grounds and agrees to become their collaborator and lackey.”
—Marcel Proust (18711922)