Definition
Suppose that R is a commutative local ring, with the maximal ideal m. Then the residue field is the quotient ring R/m.
Now suppose that X is a scheme and x is a point of X. By the definition of scheme, we may find an affine neighbourhood U = Spec(A), with A some commutative ring. Considered in the neighbourhood U, the point x corresponds to a prime ideal p ⊂ A (see Zariski topology). The local ring of X in x is by definition the localization R = Ap, with the maximal ideal m = p·Ap. Applying the construction above, we obtain the residue field of the point x :
- k(x) := Ap / p·Ap.
One can prove that this definition does not depend on the choice of the affine neighbourhood U.
A point is called K-rational for a certain field K, if k(x) ⊂ K.
Read more about this topic: Residue Field
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)