Representation Theory of Diffeomorphism Groups - Intertwining Structure

Intertwining Structure

In general, the space of sections of the tensor and jet bundles would be an irreducible representation and we often look at a subrepresentation of them. We can study the structure of these reps through the study of the intertwiners between them.

If the fiber is not an irreducible representation of Diffx1(M), then we can have a nonzero intertwiner mapping each fiber pointwise into a smaller quotient representation. Also, the exterior derivative is an intertwiner from the space of differential forms to another of higher order. (Other derivatives are not, because connections aren't invariant under diffeomorphisms, though they are covariant.) The partial derivative isn't diffeomorphism invariant. There is a derivative intertwiner taking sections of a jet bundle of order p into sections of a jet bundle of order p + 1.

Read more about this topic:  Representation Theory Of Diffeomorphism Groups

Famous quotes containing the word structure:

    The structure was designed by an old sea captain who believed that the world would end in a flood. He built a home in the traditional shape of the Ark, inverted, with the roof forming the hull of the proposed vessel. The builder expected that the deluge would cause the house to topple and then reverse itself, floating away on its roof until it should land on some new Ararat.
    —For the State of New Jersey, U.S. public relief program (1935-1943)