Representation Theory of Diffeomorphism Groups - Intertwining Structure

Intertwining Structure

In general, the space of sections of the tensor and jet bundles would be an irreducible representation and we often look at a subrepresentation of them. We can study the structure of these reps through the study of the intertwiners between them.

If the fiber is not an irreducible representation of Diffx1(M), then we can have a nonzero intertwiner mapping each fiber pointwise into a smaller quotient representation. Also, the exterior derivative is an intertwiner from the space of differential forms to another of higher order. (Other derivatives are not, because connections aren't invariant under diffeomorphisms, though they are covariant.) The partial derivative isn't diffeomorphism invariant. There is a derivative intertwiner taking sections of a jet bundle of order p into sections of a jet bundle of order p + 1.

Read more about this topic:  Representation Theory Of Diffeomorphism Groups

Famous quotes containing the word structure:

    Agnosticism is a perfectly respectable and tenable philosophical position; it is not dogmatic and makes no pronouncements about the ultimate truths of the universe. It remains open to evidence and persuasion; lacking faith, it nevertheless does not deride faith. Atheism, on the other hand, is as unyielding and dogmatic about religious belief as true believers are about heathens. It tries to use reason to demolish a structure that is not built upon reason.
    Sydney J. Harris (1917–1986)