Branches and Topics
See also: Group representationRepresentation theory is notable for the number of branches it has, and the diversity of the approaches to studying representations of groups and algebras. Although, all the theories have in common the basic concepts discussed already, they differ considerably in detail. The differences are at least 3-fold:
- Representation theory depends upon the type of algebraic object being represented. There are several different classes of groups, associative algebras and Lie algebras, and their representation theories all have an individual flavour.
- Representation theory depends upon the nature of the vector space on which the algebraic object is represented. The most important distinction is between finite dimensional representations and infinite dimensional ones. In the infinite-dimensional case, additional structures are important (e.g. whether or not the space is a Hilbert space, Banach space, etc.). Additional algebraic structures can also be imposed in the finite dimensional case.
- Representation theory depends upon the type of field over which the vector space is defined. The most important case is the field of complex numbers. The other important cases are the field of real numbers, finite fields, and fields of p-adic numbers. Additional difficulties arise for fields of positive characteristic and for fields that are not algebraically closed.
Read more about this topic: Representation Theory
Famous quotes containing the word branches:
“...there is hope for a tree, if it is cut down, that it will sprout again, and that its shoots will not cease. Though its root grows old in the earth, and its stump dies in the ground, yet at the scent of water it will bud and put forth branches like a young plant. But mortals die, and are laid low; humans expire, and where are they?”
—Bible: Hebrew, Job 14:7-10.
Related Phrases
Related Words