Characters
Any representation defines a character χ:G → C. Such a function is constant on conjugacy classes of G, a so-called class function; denote the ring of class functions by C(G). The homomorphism R(G) → C(G) is injective, so that R(G) can be identified with a subring of C(G). For fields F whose characteristic divides the order of the group G, the homomorphism from RF(G) → C(G) defined by Brauer characters is no longer injective.
For a compact connected group R(G) is isomorphic to the subring of R(T) (where T is a maximal torus) consisting of those class functions that are invariant under the action of the Weyl group (Atiyah and Hirzebruch, 1961). For the general compact Lie group, see Segal (1968).
Read more about this topic: Representation Ring
Famous quotes containing the word characters:
“Hemingway was a prisoner of his style. No one can talk like the characters in Hemingway except the characters in Hemingway. His style in the wildest sense finally killed him.”
—William Burroughs (b. 1914)
“The major men
That is different. They are characters beyond
Reality, composed thereof. They are
The fictive man created out of men.
They are men but artificial men.”
—Wallace Stevens (18791955)
“A criminal trial is like a Russian novel: it starts with exasperating slowness as the characters are introduced to a jury, then there are complications in the form of minor witnesses, the protagonist finally appears and contradictions arise to produce drama, and finally as both jury and spectators grow weary and confused the pace quickens, reaching its climax in passionate final argument.”
—Clifford Irving (b. 1930)