Representations On A Complex Finite-dimensional Vector Space
Let us first discuss representations acting on finite-dimensional complex vector spaces. A representation of a Lie group G on a finite-dimensional complex vector space V is a smooth group homomorphism Ψ:G→Aut(V) from G to the automorphism group of V.
For n-dimensional V, the automorphism group of V is identified with a subset of complex square-matrices of order n. The automorphism group of V is given the structure of a smooth manifold using this identification. The condition that Ψ is smooth, in the definition above, means that Ψ is a smooth map from the smooth manifold G to the smooth manifold Aut(V).
If a basis for the complex vector space V is chosen, the representation can be expressed as a homomorphism into GL(n,C). This is known as a matrix representation.
Read more about this topic: Representation Of A Lie Group
Famous quotes containing the words complex and/or space:
“What we do is as American as lynch mobs. America has always been a complex place.”
—Jerry Garcia (19421995)
“The womans world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.”
—Jeanine Basinger (b. 1936)