Representation of A Lie Group - Representations On A Complex Finite-dimensional Vector Space

Representations On A Complex Finite-dimensional Vector Space

Let us first discuss representations acting on finite-dimensional complex vector spaces. A representation of a Lie group G on a finite-dimensional complex vector space V is a smooth group homomorphism Ψ:G→Aut(V) from G to the automorphism group of V.

For n-dimensional V, the automorphism group of V is identified with a subset of complex square-matrices of order n. The automorphism group of V is given the structure of a smooth manifold using this identification. The condition that Ψ is smooth, in the definition above, means that Ψ is a smooth map from the smooth manifold G to the smooth manifold Aut(V).

If a basis for the complex vector space V is chosen, the representation can be expressed as a homomorphism into GL(n,C). This is known as a matrix representation.

Read more about this topic:  Representation Of A Lie Group

Famous quotes containing the words complex and/or space:

    Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the “correct” explanation is not quite so important as conveying a willingness to discuss the subject. Become an “askable parent.”
    Ruth Formanek (20th century)

    Though seas and land be ‘twixt us both,
    Our faith and troth,
    Like separated souls,
    All time and space controls:
    Above the highest sphere we meet
    Unseen, unknown, and greet as angels greet.
    Richard Lovelace (1618–1658)