Elements of RG Theory
In more technical terms, let us assume that we have a theory described by a certain function of the state variables and a certain set of coupling constants . This function may be a partition function, an action, a Hamiltonian, etc. It must contain the whole description of the physics of the system.
Now we consider a certain blocking transformation of the state variables, the number of must be lower than the number of . Now let us try to rewrite the function only in terms of the . If this is achievable by a certain change in the parameters, , then the theory is said to be renormalizable.
For some reason, most fundamental theories of physics such as quantum electrodynamics, quantum chromodynamics and electro-weak interaction, but not gravity, are exactly renormalizable. Also, most theories in condensed matter physics are approximately renormalizable, from superconductivity to fluid turbulence.
The change in the parameters is implemented by a certain beta function: , which is said to induce a renormalization flow (or RG flow) on the -space. The values of under the flow are called running couplings.
As was stated in the previous section, the most important information in the RG flow are its fixed points. The possible macroscopic states of the system, at a large scale, are given by this set of fixed points.
Since the RG transformations in such systems are lossy (i.e.: the number of variables decreases - see as an example in a different context, Lossy data compression), there need not be an inverse for a given RG transformation. Thus, in such lossy systems, the renormalization group is, in fact, a semigroup.
Read more about this topic: Renormalization Group
Famous quotes containing the words elements of, elements and/or theory:
“English general and singular terms, identity, quantification, and the whole bag of ontological tricks may be correlated with elements of the native language in any of various mutually incompatible ways, each compatible with all possible linguistic data, and none preferable to another save as favored by a rationalization of the native language that is simple and natural to us.”
—Willard Van Orman Quine (b. 1908)
“The Laws of Nature are just, but terrible. There is no weak mercy in them. Cause and consequence are inseparable and inevitable. The elements have no forbearance. The fire burns, the water drowns, the air consumes, the earth buries. And perhaps it would be well for our race if the punishment of crimes against the Laws of Man were as inevitable as the punishment of crimes against the Laws of Naturewere Man as unerring in his judgments as Nature.”
—Henry Wadsworth Longfellow (18071882)
“Lucretius
Sings his great theory of natural origins and of wise conduct; Plato
smiling carves dreams, bright cells
Of incorruptible wax to hive the Greek honey.”
—Robinson Jeffers (18871962)