Renormalization Group - Elements of RG Theory

Elements of RG Theory

In more technical terms, let us assume that we have a theory described by a certain function of the state variables and a certain set of coupling constants . This function may be a partition function, an action, a Hamiltonian, etc. It must contain the whole description of the physics of the system.

Now we consider a certain blocking transformation of the state variables, the number of must be lower than the number of . Now let us try to rewrite the function only in terms of the . If this is achievable by a certain change in the parameters, \{J_k\}\to
\{\tilde J_k\}, then the theory is said to be renormalizable.

For some reason, most fundamental theories of physics such as quantum electrodynamics, quantum chromodynamics and electro-weak interaction, but not gravity, are exactly renormalizable. Also, most theories in condensed matter physics are approximately renormalizable, from superconductivity to fluid turbulence.

The change in the parameters is implemented by a certain beta function: \{\tilde
J_k\}=\beta(\{ J_k \}), which is said to induce a renormalization flow (or RG flow) on the -space. The values of under the flow are called running couplings.

As was stated in the previous section, the most important information in the RG flow are its fixed points. The possible macroscopic states of the system, at a large scale, are given by this set of fixed points.

Since the RG transformations in such systems are lossy (i.e.: the number of variables decreases - see as an example in a different context, Lossy data compression), there need not be an inverse for a given RG transformation. Thus, in such lossy systems, the renormalization group is, in fact, a semigroup.

Read more about this topic:  Renormalization Group

Famous quotes containing the words elements of, elements and/or theory:

    The elements of success in this business do not differ from the elements of success in any other. Competition is keen and bitter. Advertising is as large an element as in any other business, and since the usual avenues of successful exploitation are closed to the profession, the adage that the best advertisement is a pleased customer is doubly true for this business.
    Madeleine [Blair], U.S. prostitute and “madam.” Madeleine, ch. 5 (1919)

    The Laws of Nature are just, but terrible. There is no weak mercy in them. Cause and consequence are inseparable and inevitable. The elements have no forbearance. The fire burns, the water drowns, the air consumes, the earth buries. And perhaps it would be well for our race if the punishment of crimes against the Laws of Man were as inevitable as the punishment of crimes against the Laws of Nature—were Man as unerring in his judgments as Nature.
    Henry Wadsworth Longfellow (1807–1882)

    It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.
    Jean Baudrillard (b. 1929)