In mathematics, a remarkable cardinal is a certain kind of large cardinal number.
A cardinal κ is called remarkable if for all regular cardinals θ > κ, there exist π, M, λ, σ, N and ρ such that
- π : M → Hθ is an elementary embedding
- M is countable and transitive
- π(λ) = κ
- σ : M → N is an elementary embedding with critical point λ
- N is countable and transitive
- ρ = M ∩ Ord is a regular cardinal in N
- σ(λ) > ρ
- M = HρN, i.e., M ∈ N and N |= "M is the set of all sets that are hereditarily smaller than ρ"
Famous quotes containing the words remarkable and/or cardinal:
“There have been many stories told about the bottom, or rather no bottom, of this pond, which certainly had no foundation for themselves. It is remarkable how long men will believe in the bottomlessness of a pond without taking the trouble to sound it.”
—Henry David Thoreau (18171862)
“To this war of every man against every man, this also is consequent; that nothing can be Unjust. The notions of Right and Wrong, Justice and Injustice have there no place. Where there is no common Power, there is no Law; where no Law, no Injustice. Force, and Fraud, are in war the two Cardinal virtues.”
—Thomas Hobbes (15791688)