Relative Density - Temperature Dependence

Temperature Dependence

See Density for a table of the measured densities of water at various temperatures.

The density of substances varies with temperature and pressure so that it is necessary to specify the temperatures and pressures at which the densities or weights were determined. It is nearly always the case that measurements are made at nominally 1 atmosphere (101.325 kPa the variations caused by changing weather patterns) but as specific gravity usually refers to highly incompressible aqueous solutions or other incompressible substances (such as petroleum products) variations in density caused by pressure are usually neglected at least where apparent specific gravity is being measured. For true (in vacuo) specific gravity calculations air pressure must be considered (see below). Temperatures are specified by the notation Ts/Tr) with Ts representing the temperature at which the sample's density was determined and Tr the temperature at which the reference (water) density is specified. For example SG (20°C/4°C) would be understood to mean that the density of the sample was determined at 20 °C and of the water at 4 °C. Taking into account different sample and reference temperatures we note that while SGH2O = 1.000000 (20°C/20°C) it is also the case that SGH2O = 0.998203/0.998840 = 0.998363 (20°C/4°C). Here temperature is being specified using the current ITS-90 scale and the densities used here and in the rest of this article are based on that scale. On the previous IPTS-68 scale the densities at 20 °C and 4 °C are, respectively, 0.9982071 and 0.9999720 resulting in an SG (20°C/4°C) value for water of 0.9982343.

The temperatures of the two materials may be explicitly stated in the density symbols; for example:

relative density: or specific gravity:

where the superscript indicates the temperature at which the density of the material is measured, and the subscript indicates the temperature of the reference substance to which it is compared.

Read more about this topic:  Relative Density

Famous quotes containing the words temperature and/or dependence:

    This pond never breaks up so soon as the others in this neighborhood, on account both of its greater depth and its having no stream passing through it to melt or wear away the ice.... It indicates better than any water hereabouts the absolute progress of the season, being least affected by transient changes of temperature. A severe cold of a few days’ duration in March may very much retard the opening of the former ponds, while the temperature of Walden increases almost uninterruptedly.
    Henry David Thoreau (1817–1862)

    This immediate dependence of language upon nature, this conversion of an outward phenomenon into a type of somewhat in human life, never loses its power to affect us. It is this which gives that piquancy to the conversation of a strong-natured farmer or backwoodsman, which all men relish.
    Ralph Waldo Emerson (1803–1882)