Relational quantum mechanics (RQM) is an interpretation of quantum mechanics which treats the state of a quantum system as being observer-dependent, that is, the state is the relation between the observer and the system. This interpretation was first delineated by Carlo Rovelli in a 1994 preprint, and has since been expanded upon by a number of theorists. It is inspired by the key idea behind Special Relativity, that the details of an observation depend on the reference frame of the observer, and uses some ideas from Wheeler on quantum information.
The physical content of the theory is thus not to do with objects themselves, but the relations between them. As Rovelli puts it: "Quantum mechanics is a theory about the physical description of physical systems relative to other systems, and this is a complete description of the world".
The essential idea behind RQM is that different observers may give different accounts of the same series of events: for example, to one observer at a given point in time, a system may be in a single, "collapsed" eigenstate, while to another observer at the same time, it may appear to be in a superposition of two or more states. Consequently, if quantum mechanics is to be a complete theory, RQM argues that the notion of "state" describes not the observed system itself, but the relationship, or correlation, between the system and its observer(s). The state vector of conventional quantum mechanics becomes a description of the correlation of some degrees of freedom in the observer, with respect to the observed system. However, it is held by RQM that this applies to all physical objects, whether or not they are conscious or macroscopic (all systems are quantum systems). Any "measurement event" is seen simply as an ordinary physical interaction, an establishment of the sort of correlation discussed above. The proponents of the relational interpretation argue that the approach clears up a number of traditional interpretational difficulties with quantum mechanics, while being simultaneously conceptually elegant and ontologically parsimonious.
Read more about Relational Quantum Mechanics: History and Development, The Problem of The Observer Observed, Relationship With Other Interpretations, EPR and Quantum Non-locality, Derivation, See Also
Famous quotes containing the words quantum and/or mechanics:
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“the moderate Aristotelian city
Of darning and the Eight-Fifteen, where Euclids geometry
And Newtons mechanics would account for our experience,
And the kitchen table exists because I scrub it.”
—W.H. (Wystan Hugh)