Regular Space

In topology and related fields of mathematics, a topological space X is called a regular space if every non-empty closed subset C of X and a point p not contained in C admit non-overlapping open neighborhoods. Thus p and C can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms.

Read more about Regular Space:  Definitions, Relationships To Other Separation Axioms, Examples and Nonexamples, Elementary Properties

Famous quotes containing the words regular and/or space:

    “I couldn’t afford to learn it,” said the Mock Turtle with a sigh. “I only took the regular course.”
    “What was that?” inquired Alice.
    “Reeling and Writhing, of course, to begin with,” the Mock Turtle replied; “and then the different branches of Arithmetic—Ambition, Distraction, Uglification, and Derision.”
    “I never heard of ‘Uglification,’” Alice ventured to say.
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.
    Isaac Newton (1642–1727)