In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each vertex are equal to each other. A regular graph with vertices of degree k is called a k‑regular graph or regular graph of degree k.
Regular graphs of degree at most 2 are easy to classify: A 0-regular graph consists of disconnected vertices, a 1-regular graph consists of disconnected edges, and a 2-regular graph consists of disconnected cycles and infinite chains.
A 3-regular graph is known as a cubic graph.
A strongly regular graph is a regular graph where every adjacent pair of vertices has the same number l of neighbors in common, and every non-adjacent pair of vertices has the same number n of neighbors in common. The smallest graphs that are regular but not strongly regular are the cycle graph and the circulant graph on 6 vertices.
The complete graph is strongly regular for any .
A theorem by Nash-Williams says that every k‑regular graph on 2k + 1 vertices has a Hamiltonian cycle.
-
0-regular graph
-
1-regular graph
-
2-regular graph
-
3-regular graph
Read more about Regular Graph: Existence, Algebraic Properties, Generation
Famous quotes containing the words regular and/or graph:
“I couldnt afford to learn it, said the Mock Turtle with a sigh. I only took the regular course.
What was that? inquired Alice.
Reeling and Writhing, of course, to begin with, the Mock Turtle replied; and then the different branches of ArithmeticAmbition, Distraction, Uglification, and Derision.
I never heard of Uglification, Alice ventured to say.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.”
—Marshall McLuhan (19111980)