Regression Analysis - History

History

The earliest form of regression was the method of least squares, which was published by Legendre in 1805, and by Gauss in 1809. Legendre and Gauss both applied the method to the problem of determining, from astronomical observations, the orbits of bodies about the Sun (mostly comets, but also later the then newly discovered minor planets). Gauss published a further development of the theory of least squares in 1821, including a version of the Gauss–Markov theorem.

The term "regression" was coined by Francis Galton in the nineteenth century to describe a biological phenomenon. The phenomenon was that the heights of descendants of tall ancestors tend to regress down towards a normal average (a phenomenon also known as regression toward the mean). For Galton, regression had only this biological meaning, but his work was later extended by Udny Yule and Karl Pearson to a more general statistical context. In the work of Yule and Pearson, the joint distribution of the response and explanatory variables is assumed to be Gaussian. This assumption was weakened by R.A. Fisher in his works of 1922 and 1925. Fisher assumed that the conditional distribution of the response variable is Gaussian, but the joint distribution need not be. In this respect, Fisher's assumption is closer to Gauss's formulation of 1821.

In the 1950s and 1960s, economists used electromechanical desk calculators to calculate regressions. Before 1970, it sometimes took up to 24 hours to receive the result from one regression.

Regression methods continue to be an area of active research. In recent decades, new methods have been developed for robust regression, regression involving correlated responses such as time series and growth curves, regression in which the predictor or response variables are curves, images, graphs, or other complex data objects, regression methods accommodating various types of missing data, nonparametric regression, Bayesian methods for regression, regression in which the predictor variables are measured with error, regression with more predictor variables than observations, and causal inference with regression.

Read more about this topic:  Regression Analysis

Famous quotes containing the word history:

    As History stands, it is a sort of Chinese Play, without end and without lesson.
    Henry Brooks Adams (1838–1918)

    One classic American landscape haunts all of American literature. It is a picture of Eden, perceived at the instant of history when corruption has just begun to set in. The serpent has shown his scaly head in the undergrowth. The apple gleams on the tree. The old drama of the Fall is ready to start all over again.
    Jonathan Raban (b. 1942)

    The history of his present majesty, is a history of unremitting injuries and usurpations ... all of which have in direct object the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid world, for the truth of which we pledge a faith yet unsullied by falsehood.
    Thomas Jefferson (1743–1826)