Classical Electromagnetism
Historically, the first example of gauge symmetry to be discovered was classical electromagnetism. In electrostatics, one can either discuss the electric field, E, or its corresponding electric potential, V. Knowledge of one makes it possible to find the other, except that potentials differing by a constant, correspond to the same electric field. This is because the electric field relates to changes in the potential from one point in space to another, and the constant C would cancel out when subtracting to find the change in potential. In terms of vector calculus, the electric field is the gradient of the potential, . Generalizing from static electricity to electromagnetism, we have a second potential, the vector potential A, with
The general gauge transformations now become not just but
where f is any function that depends on position and time. The fields remain the same under the gauge transformation, and therefore Maxwell's equations are still satisfied. That is, Maxwell's equations have a gauge symmetry.
Read more about this topic: Regauging, Classical Gauge Theory
Famous quotes containing the word classical:
“Several classical sayings that one likes to repeat had quite a different meaning from the ones later times attributed to them.”
—Johann Wolfgang Von Goethe (17491832)