Reflexive Space
In functional analysis, a Banach space (or more generally a locally convex topological vector space) is called reflexive if it coincides with the dual of its dual space in the topological and algebraic senses. Reflexive Banach spaces are often characterized by their geometric properties.
Read more about Reflexive Space: Examples, Properties, Stereotype Spaces and Other Versions of Reflexivity
Famous quotes containing the word space:
“Even the most subjected person has moments of rage and resentment so intense that they respond, they act against. There is an inner uprising that leads to rebellion, however short- lived. It may be only momentary but it takes place. That space within oneself where resistance is possible remains.”
—bell hooks (b. c. 1955)