Reflexive Space
In functional analysis, a Banach space (or more generally a locally convex topological vector space) is called reflexive if it coincides with the dual of its dual space in the topological and algebraic senses. Reflexive Banach spaces are often characterized by their geometric properties.
Read more about Reflexive Space: Examples, Properties, Stereotype Spaces and Other Versions of Reflexivity
Famous quotes containing the word space:
“The flattering, if arbitrary, label, First Lady of the Theatre, takes its toll. The demands are great, not only in energy but eventually in dramatic focus. It is difficult, if not impossible, for a star to occupy an inch of space without bursting seams, cramping everyone elses style and unbalancing a play. No matter how self-effacing a famous player may be, he makes an entrance as a casual neighbor and the audience interest shifts to the house next door.”
—Helen Hayes (19001993)