Reflexive Relation - Related Terms

Related Terms

An irreflexive, or anti-reflexive, relation is the opposite of a reflexive relation: it is a binary relation on a set where no element is related to itself. An example is the "greater than" relation (x>y) on the real numbers. Note that not every relation which is not reflexive is irreflexive; it is possible to define relations where some elements are related to themselves but others are not related to themselves (i.e., neither all nor none). For example, the binary relation "the product of x and y is even" is reflexive on the set of even numbers, irreflexive on the set of odd numbers, and neither reflexive nor irreflexive on the set of natural numbers.

A relation is called quasi-reflexive if every element that is related to some element is related to itself. An example is the relation "has the same limit as" on the set of sequences of real numbers: Not every sequence has a limit, and thus the relation is not reflexive, but if a sequence has the same limit as some sequence, then it has the same limit as itself.

The reflexive closure of a binary relation ~ on a set S is the smallest relation ~′ such that ~′ is a superset of ~ and ~′ is reflexive on S. This is equivalent to the union of ~ and the identity relation on S. For example, the reflexive closure of x

The reflexive reduction of a binary relation ~ on a set S is the smallest relation ~′ such that ~′ shares the same reflexive closure as ~. It can be seen in a way as the opposite of the reflexive closure. It is equivalent to the complement of the identity relation on S with regard to ~. That is, it is equivalent to ~ except for where x~x is true. For example, the reflexive reduction of x≤y is x

Read more about this topic:  Reflexive Relation

Famous quotes containing the words related and/or terms:

    Becoming responsible adults is no longer a matter of whether children hang up their pajamas or put dirty towels in the hamper, but whether they care about themselves and others—and whether they see everyday chores as related to how we treat this planet.
    Eda Le Shan (20th century)

    Suppose you go to war, you cannot fight always; and when, after much loss on both sides, and no gain on either, you cease fighting, the identical old questions, as to terms of intercourse, are again upon you.
    Abraham Lincoln (1809–1865)