Use in Astronomical Research
Nearly all large research-grade astronomical telescopes are reflectors. There are several reasons for this:
- In a lens the entire volume of material has to be free of imperfection and inhomogeneities, whereas in a mirror, only one surface has to be perfectly polished.
- Light of different wavelengths travels through a medium other than vacuum at different speeds. This causes chromatic aberration in uncorrected lenses and creating an aberration-free large lens is a costly process. A mirror can eliminate this problem entirely.
- Reflectors work in a wider spectrum of light since certain wavelengths are absorbed when passing through glass elements like those found in a refractor or catadioptric.
- There are structural problems involved in manufacturing and manipulating large-aperture lenses. Since a lens can only be held in place by its edge, the center of a large lens will sag due to gravity, distorting the image it produces. The largest practical lens size in a refracting telescope is around 1 meter. In contrast, a mirror can be supported by the whole side opposite its reflecting face, allowing for reflecting telescope designs that can overcome gravitational sag. The largest reflector designs currently exceed 10 meters in diameter.
Read more about this topic: Reflecting Telescope
Famous quotes containing the word research:
“To be sure, nothing is more important to the integrity of the universities ... than a rigorously enforced divorce from war- oriented research and all connected enterprises.”
—Hannah Arendt (19061975)
Related Subjects
Related Phrases
Related Words