Reduction Potential - in Environmental Chemistry

In Environmental Chemistry

See also: Pourbaix diagram

In the field of environmental chemistry, the reduction potential is used to determine if oxidizing or reducing conditions are prevalent in water or soil, and to predict the states of different chemical species in the water, such as dissolved metals. pE values in water ranges from -12 to 25; the levels where the water itself becomes reduced or oxidized, respectively.

The reduction potentials in natural systems often lie comparatively near one of the boundaries of the stability region of water. Aerated surface water, rivers, lakes, oceans, rainwater and acid mine water, usually have oxidizing conditions (positive potentials). In places with limitations in air supply, such as submerged soils, swamps and marine sediments, reducing conditions (negative potentials) are the norm. Intermediate values are rare and usually a temporary condition found in systems moving to higher or lower pE values.

In environmental situations, it is common to have complex non-equilibrium conditions between a large number of species, meaning that it is often not possible to make accurate and precise measurements of the reduction potential. However, it is usually possible to obtain an approximate value and define the conditions as being in the oxidizing or reducing regime.

Read more about this topic:  Reduction Potential

Famous quotes containing the word chemistry:

    The chemistry of dissatisfaction is as the chemistry of some marvelously potent tar. In it are the building stones of explosives, stimulants, poisons, opiates, perfumes and stenches.
    Eric Hoffer (1902–1983)