Recursively Enumerable Set - Formal Definition

Formal Definition

A set S of natural numbers is called recursively enumerable if there is a partial recursive function (synonymously, a partial computable function) whose domain is exactly S, meaning that the function is defined if and only if its input is a member of S.

Read more about this topic:  Recursively Enumerable Set

Famous quotes containing the words formal and/or definition:

    It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between “ideas” and “things,” both of which he assumes as given; he need not inquire whether either sphere is “real” or whether, in the final analysis, reality consists in their interaction.
    Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)