Examples
- Every recursive set is recursively enumerable, but it is not true that every recursively enumerable set is recursive.
- A recursively enumerable language is a recursively enumerable subset of a formal language.
- The set of all provable sentences in an effectively presented axiomatic system is a recursively enumerable set.
- Matiyasevich's theorem states that every recursively enumerable set is a Diophantine set (the converse is trivially true).
- The simple sets are recursively enumerable but not recursive.
- The creative sets are recursively enumerable but not recursive.
- Any productive set is not recursively enumerable.
- Given a Gödel numbering of the computable functions, the set (where is the Cantor pairing function and indicates is defined) is recursively enumerable. This set encodes the halting problem as it describes the input parameters for which each Turing machine halts.
- Given a Gödel numbering of the computable functions, the set is recursively enumerable. This set encodes the problem of deciding a function value.
- Given a partial function f from the natural numbers into the natural numbers, f is a partial recursive function if and only if the graph of f, that is, the set of all pairs such that f(x) is defined, is recursively enumerable.
Read more about this topic: Recursively Enumerable Set
Famous quotes containing the word examples:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
Related Subjects
Related Phrases
Related Words