Recursively Enumerable Language
In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable or Turing-acceptable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.
Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages. All regular, context-free, context-sensitive and recursive languages are recursively enumerable.
The class of all recursively enumerable languages is called RE.
Read more about Recursively Enumerable Language: Definitions, Example, Closure Properties
Famous quotes containing the word language:
“If fancy then
Unequal fails beneath the pleasing task,
Ah, what shall language do?”
—James Thomson (17001748)