Recursive Bayesian Estimation - Model

Model

The true state is assumed to be an unobserved Markov process, and the measurements are the observed states of a Hidden Markov Model (HMM). The following picture presents a Bayesian Network of a HMM.

Because of the Markov assumption, the probability of the current true state given the immediately previous one is conditionally independent of the other earlier states.

Similarly, the measurement at the k-th timestep is dependent only upon the current state, so is conditionally independent of all other states given the current state.

Using these assumptions the probability distribution over all states of the HMM can be written simply as:

However, when using the Kalman filter to estimate the state x, the probability distribution of interest is associated with the current states conditioned on the measurements up to the current timestep. (This is achieved by marginalising out the previous states and dividing by the probability of the measurement set.)

This leads to the predict and update steps of the Kalman filter written probabilistically. The probability distribution associated with the predicted state is the sum (integral) of the products of the probability distribution associated with the transition from the (k - 1)-th timestep to the k-th and the probability distribution associated with the previous state, over all possible .

The probability distribution of update is proportional to the product of the measurement likelihood and the predicted state.

 p(\textbf{x}_k|\textbf{z}_{k}) = \frac{p(\textbf{z}_k|\textbf{x}_k) p(\textbf{x}_k|\textbf{z}_{k-1})}{p(\textbf{z}_k|\textbf{z}_{k-1})}
= \alpha\,p(\textbf{z}_k|\textbf{x}_k) p(\textbf{x}_k|\textbf{z}_{k-1})

The denominator

is constant relative to, so we can always substitute it for a coefficient, which can usually be ignored in practice. The numerator can be calculated and then simply normalized, since its integral must be unitary.

Read more about this topic:  Recursive Bayesian Estimation

Famous quotes containing the word model:

    Research shows clearly that parents who have modeled nurturant, reassuring responses to infants’ fears and distress by soothing words and stroking gentleness have toddlers who already can stroke a crying child’s hair. Toddlers whose special adults model kindliness will even pick up a cookie dropped from a peer’s high chair and return it to the crying peer rather than eat it themselves!
    Alice Sterling Honig (20th century)

    She represents the unavowed aspiration of the male human being, his potential infidelity—and infidelity of a very special kind, which would lead him to the opposite of his wife, to the “woman of wax” whom he could model at will, make and unmake in any way he wished, even unto death.
    Marguerite Duras (b. 1914)

    If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.
    James Mcneill Whistler (1834–1903)